3.1313 \(\int \sqrt{a+a \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^{\frac{5}{2}}(c+d x) \, dx\)

Optimal. Leaf size=140 \[ \frac{2 a (A+3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{2 A \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{2 \sqrt{a} C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

[Out]

(2*Sqrt[a]*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d
+ (2*a*(A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*A*Sqrt[a + a*Cos[c + d*x
]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.47332, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {4221, 3043, 2980, 2774, 216} \[ \frac{2 a (A+3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{2 A \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{2 \sqrt{a} C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2),x]

[Out]

(2*Sqrt[a]*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d
+ (2*a*(A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*A*Sqrt[a + a*Cos[c + d*x
]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3043

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C -
 B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac{5}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)} \left (\frac{1}{2} a (A+3 B)+\frac{3}{2} a C \cos (c+d x)\right )}{\cos ^{\frac{3}{2}}(c+d x)} \, dx}{3 a}\\ &=\frac{2 a (A+3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a (A+3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}-\frac{\left (2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{2 \sqrt{a} C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{d}+\frac{2 a (A+3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.387188, size = 105, normalized size = 0.75 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right ) ((2 A+3 B) \cos (c+d x)+A)+3 \sqrt{2} C \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right ) \cos ^{\frac{3}{2}}(c+d x)\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^(3/2)*(3*Sqrt[2]*C*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*
Cos[c + d*x]^(3/2) + 2*(A + (2*A + 3*B)*Cos[c + d*x])*Sin[(c + d*x)/2]))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 0.202, size = 286, normalized size = 2. \begin{align*} -{\frac{2\,\cos \left ( dx+c \right ) \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{3\,d \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( 1+\cos \left ( dx+c \right ) \right ) ^{2}} \left ( 3\,C \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+6\,C \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \cos \left ( dx+c \right ) +3\,C \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) +2\,A\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +3\,B\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +A\sin \left ( dx+c \right ) \right ) \sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x)

[Out]

-2/3/d*(3*C*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*
cos(d*x+c)^2+6*C*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x
+c))*cos(d*x+c)+3*C*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(
d*x+c))+2*A*sin(d*x+c)*cos(d*x+c)+3*B*cos(d*x+c)*sin(d*x+c)+A*sin(d*x+c))*cos(d*x+c)*(a*(1+cos(d*x+c)))^(1/2)*
(1/cos(d*x+c))^(5/2)*sin(d*x+c)^2/(-1+cos(d*x+c))/(1+cos(d*x+c))^2

________________________________________________________________________________________

Maxima [B]  time = 2.38839, size = 2088, normalized size = 14.91 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/6*(3*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*sqrt(a)*sin(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(
1/4)*(cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c) + 1)*sin(3
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + ((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c
os(2*d*x + 2*c) + 1)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (co
s(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - (cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - (cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*co
s(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(
2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) +
 (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x +
2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x +
2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 + 1)) - 1))*sqrt(a))*C/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) + 4*A*(3*sqrt(2)*sq
rt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 4*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + sqrt(2)*sqrt(a
)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c
) + 1) + 1)^(5/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + sin(d*
x + c)^4/(cos(d*x + c) + 1)^4 + 1)) + 12*B*(sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 2*sqrt(2)*sqrt(a
)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)*(sin(d*x + c)^2/(
cos(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)
^(5/2)*(2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.65325, size = 344, normalized size = 2.46 \begin{align*} -\frac{2 \,{\left (3 \,{\left (C \cos \left (d x + c\right )^{2} + C \cos \left (d x + c\right )\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{{\left ({\left (2 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + A\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}\right )}}{3 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-2/3*(3*(C*cos(d*x + c)^2 + C*cos(d*x + c))*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a
)*sin(d*x + c))) - ((2*A + 3*B)*cos(d*x + c) + A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d
*cos(d*x + c)^2 + d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**(5/2)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(a*cos(d*x + c) + a)*sec(d*x + c)^(5/2), x)